Sonic surgery

Application of sonic instruments in oral, periodontal & implant surgery.

D'Alessandro Geminiani

Outline

- Understand the mechanism of action of sonic instruments
- Present the surgical applications of sonic instruments
- Evaluate science supporting the use sonic instruments

• First application of ultrasound to human tissue in 1950 (Pohlman)

Kennedy et al. 2003

Same year, Maintz used ultrasound for bone healing

Maintz 1950

• In 1952, ultrasonic unit used for preparation of cavities

Used routinely in periodontics for scaling and root planing.

Indicated in hard-to-reach and difficult area (furcations).

Sonic

2'000 - 6'000 Hz

Frequency

Stroke Pattern

Power Supply

Irrigation

Pacemakers

Elliptical

Dental Unit

Dental Unit

No Interference

Magnetostrictive

18'000 -45'000 Hz

Elliptical

Separate Unit

Separate Irrigation System

Interference

Ultrasonic Instruments

20'000 - 50'000 Hz

Linear

Separate Unit

Separate Irrigation System

Interference

Hand, Sonic and Ultrasonic resulted in similar healing responses

Badersten et al. 1981, 1984 Lindhe & Nyman 1985

Less time spent for debridement

Wennstrom et al. 2005

Less root surface loss compared to hand instruments

Ritz et al. 1991 Schmidlin et al. 2001

Better acces to furcation area and deep pockets

Kocher et al. 1998

Beuchat et al. 2001

In 1988 first reported application of oscillating instruments for bone surgery

Vercellotti et al. 2000

Cavitation Effect

Advantages of Sonic Surgery

Precise Osteotomy

Selective Cutting Action

Improved Bone Healing

Cavitation Effect

Manual instruments

How does it work?

Sonic Instruments

2'000 - 6'000 Hz

Elliptical Stroke Pattern

Connected to Dental Unit

Dental Unit Irrigation System

No Effect on Pacemakers

Ultrasonic Instruments

20'000 - 50'000 Hz

Linear (Piezo) Stroke Pattern

Separate Unit

Separate Irrigation System

Electromagnetic Interference Pacemakers

- Heat Generation and Transmission due to:
 - High frequency
 - Reduce amplitude
 - Lack of irrigation

Osteotomy	Temperature difference (°C)			
	Round bur	Piezosurgery [®]	SONICflex®	
1	1.99	5.34	1.59	
2	2.98	34.32	4.09	
3	0.61	11.95	1.67	
4	1.31	14.05	2.73	
5	0.82	25.18	1.39	
Mean	1.54	18.17	2.29	
Std.	0.96	11.51	1.13	

How does it work?

Advantages of Sonic Surgery

Selective Cutting Action

Advantages of Sonic Surgery Selective Cutting Action

Rat (25) sciatic nerve exposed Contact with surgical instrument

Group 1: insert (no vibration) contact with nerve (3N) for 5s

Group 2: insert (vibration) contact with nerve (3N) for 5s

Group 3: surgical insert in contact with nerve (5N) for 1s

Advantages of Sonic Surgery Selective Cutting Action

- Motor and sensory nerve function monitored for 150 days
- Histological analysis to assess integrity of the perineurium and axonal damage

Advantages of Sonic Surgery Selective Cutting Action

 Histologically, no dissection or damage of the perineurium was visible in any of the nerves of groups A, B, or C animals.

 Direct contact of the insert with the nerve did not dissect the nerve although induced some damage.

Advantages of Sonic Surgery

Precise Osteotomy

Selective Cutting Action
Schaeren et al. 2005

Improved Bone Healing

Cavitation Effect

Advantages of Sonic Surgery Improved Bone Healing

- Animal Model: Female Hound (4), periodontal defect cerated (mandibular P1 to P4 and M1), removing 4mm of crestal bone.
- Teeth randomly assigned to one of three groups: piezosurgery (PS), carbide bur (CB), diamond bur (DB).
- Notch placed on the root surface at the post-surgical crest level.

Advantages of Sonic Surgery Improved Bone Healing

Histometrical analysis evaluating bone gain/loss from notch to crest

Advantages of Sonic Surgery Improved Bone Healing

 PS provided more favorable osseous repair and remodeling than CB or DB

Limitations of the study

Table 1	Mean bone level gain from the baseline (mm)					
	Instrument					
Healing tin	ne (d)	СВ	DB	PS		
0		0.00	0.00	0.00		
14		-0.21	-0.03	0.03		
28		0.24	0.09	0.21		
56		-0.37	-0.83*	0.45*		

Advantages of Sonic Surgery

Precise Osteotomy

Selective Cutting Action
Schaeren et al. 2005

Improved Bone Healing Vercellotti et al. 2005

Cavitation Effect

Advantages of Sonic Surgery

Cavitation Effect

Clinical Applications

- Atraumatic extraction
- ✓ Sinus lift
- Wisdom tooth extraction

- ☑ Block or Chip bone graft harvesting
- Corticotomy (Wilcodontics)
- Tori Removal

Clinical Applications

Atraumatic Extraction

Dr. Ivo Agabiti

Dr. Ivo Agabiti

Dr. Ivo Agabiti

Atraumatic Extraction

Dr. Ivo Agabiti

Clinical Applications Extraction & Immediate Implant

Dr. Ivo Agabiti

Dr. Ivo Agabiti

Dr. Ivo Agabiti

Dr. Ivo Agabiti

Dr. Ivo Agabiti

Dr. Ivo Agabiti

Extraction, Immediate Implant & Loading

Clinical Applications Corticotomy

Clinical Applications Corticotomy

Clinical Applications Bone Harvesting

Clinical Applications Bone Harvesting

Bone Harvesting

 Quantity of vital bone cells similar to conventional methods (particulate)

Berengo et al. 2006

 OIBS harvested particles of larger size
 Chiriac et al. 2005

Level of scientific evidence:
 longitudinal studies (case series)

 Happe et al. 2007

Clinical Applications Ridge Splitting

Clinical Applications Ridge Splitting

Clinical Applications Ridge Splitting

Ridge Splitting

Ridge Splitting

- One of the first application of OIBS
 Vercellotti 2000
- Proposed benefit: better control, reduced risk of soft tissue injuries
- Level of scientific evidence: longitudinal studies (case series)

Atraumatic Extraction

Atraumatic Extraction

Clinical Applications

Maxillary Sinus Lift

 Incidence of sinus membrane perforation with conventional surgical technique 14-56%

Wallace et al. 2007

- Incidence of sinus membrane perforation with OIBS 5-20% Vercellotti et al. 2001

Barone et al. 2007 - RCT

- Study could not reject the null hypothesis
- Limited power to show a significant difference

Table 1. Clinical parameters (mean \pm standard deviation) during osteotomy and sinus membrane elevation in the piezoelectric group and conventional instruments group

Parameters	Piezoelectric device (test group)	Conventional instruments (control group)	<i>P</i> value significant for <i>P</i> <0.05
Window height <i>H</i> (mm)	8.9 <u>+</u> 1	9.3 <u>+</u> 1.1	NS
Window lenght L (mm)	15.3 ± 1.5	16.2 <u>+</u> 0.7	NS
Window area A (mm²)	137 <u>+</u> 24.2	151.2 ± 20.4	NS
Bone thickness T (mm)	0.7 ± 0.2	0.8 <u>+</u> 0.2	NS
Time required (min)	11.5 ± 3.8	10.2 <u>+</u> 2.4	NS
Perforations	4 (30.7%)	3 (23%)	NS

Geminiani et al. 2013

- MM: Retrospective study, chart review, 93 consecutive patients (130 sinus augmentation)
- Group 1 (control): preparation of the window with rotary diamond bur, elevation of the membrane manual instrument
- Group 2 (test): preparation of the window with OIBS (sonic), elevation of the membrane manual instrument

Geminiani et al. 2013

- Group 1 (control):51 maxillary sinuses
 27.5% perforation during osteotomy
 43.1% perforation during elevation
- Group 2 (test): 79 maxillary sinuses
 12.7% perforation during osteotomy
 25.3% perforation during elevation
- NS difference in post-operative complications

Why this difference?

- Possible explanation of difference two study:
 - Sample size
 - Operator experience
 - Bias study design
 - Difference sonic ultrasonic frequency

Other Applications

The tips can also be used in:

W&H Series Synea®

SIROAIR L made by Sirona

SONICflex® made by KaVo.

Clinical Applications

Crown & Bridge

Conclusions

- I. Sonic handpiece is a versatile tool with numerous applications in restorative dentistry, periodontics, implants & oral surgery
- 2. The incidence of intra-operative complication might be reduced by using non-rotating surgical tools
- 3. The learning curve of complicated surgical procedure might be reduced by using "safer" surgical tools (confidence, better visibility and control)